Performance Optimization via Sequential Processing for Nonlinear State Estimation of Noisy Systems

نویسندگان

چکیده

We propose a framework for designing observers noisy nonlinear systems with global convergence properties and performing robustness noise sensitivity. This comes out from the combination of state norm estimator chain filters, adaptively tuned by estimator. The estimate is sequentially processed through filters. Each filter contributes to improving, certain amount, estimation error performances previous in terms sensitivity, this amount quantitatively evaluated using comparison criterion, which considers ratio asymptotic bounds two consecutive filters chain. A recursive algorithm given implementing guaranteeing sequential performance optimization process. Simulations show effectiveness these chains

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

State Estimation for Nonlinear Systems Using Restricted Genetic Optimization

In this paper we describe a new nonlinear estimator for filtering systems with nonlinear process and observation models, based on the optimization with RGO (Restricted Genetic Optimization). Simulation results are used to compare the performance of this method with EKF (Extended Kalman Filter), IEKF (Iterated Extended Kalman Filter), SNF (Second-order Nonlinear Filter), SIF (Single-stage Iterat...

متن کامل

Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems

Sequential state estimation has established itself as one of the essential elements of signal processing and control theory. Typically, we think of its use being confined to dynamic systems, where we are given a set of observables and the requirement is to estimate the hidden state of the system on which the observables are dependant. However, when the issue of interest is that of pattern-class...

متن کامل

State and Parameter Estimation for Nonlinear Systems

A constructive method is proposed for the design of nonlinear adaptive observers with global convergence for recursive joint estimation of states and parameters. It extends an earlier result to systems with a more general parametrization. The considered nonlinear systems are those typically considered for the design of high gain observers with additional terms involving unknown parameters. A nu...

متن کامل

State Estimation for Equality-Constrained Nonlinear Systems

This paper addresses the state-estimation problem for nonlinear systems in a context where prior knowledge, in addition to the model and the measurement data, is available in the form of a nonlinear equality constraint. Then three suboptimal algorithms based on the unscented Kalman filter (UKF) are developed, namely, the equality-constrained unscented Kalman filter (ECUKF), the projected unscen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2022

ISSN: ['0018-9286', '1558-2523', '2334-3303']

DOI: https://doi.org/10.1109/tac.2021.3095461